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ON CERTAIN ENERGIES OF A ONE-POINT UNION OF
COMPLETE GRAPHS K,
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ABSTRACT. The eigenvalues of a graph G are the eigenvalues of its ad-
jacency matrix. The energy of the graph is defined as the sum of the
absolute values of all its eigenvalues. In this paper we compute differ-
ent energies of a one-point union of m copies of complete graphs on n
vertices.
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1. INTRODUCTION

Let G(V, E) be a simple connected undirected graph with p vertices and
q edges. The adjacency matrix of G is the 0 — 1 matrix A = (A;,y), where
Agy = 1 when there is an edge between vertices « and y in G and A,y = 0,
otherwise.

The characteristic polynomial of G is the characteristic polynomial of the
adjacency matrix A and is denoted by pg(A). The eigenvalues of G are the
zeros of the characteristic polynomial and the spectrum of G is the multiset
of eigenvalues of G denoted by Spec(G). We write

Spec(G)z(Al oo AP)

mp Mmo - mp

where Ai, Ao+ -\, are the eigenvalues and m; is the multiplicity of ;, 1 <
i < p. Unless we indicate otherwise, we shall assume that Ay > Ay > ... >
Ap- The largest eigenvalue \; is called the index of G. The terminology and
definitions that we adopt are as in [5, 8, 9].

Since the adjacency matrix A is real and symmetric, all its eigenvalues
are real. Since A has zero diagonal, the trace of A and hence the sum of
eigenvalues is zero. If Ai, Az ...\, are the eigenvalues of G, then the energy
of G is defined by

P
(1) EG) =N
j=1

The Laplace matrix of G is the matrix L = (Lgy) where Lyy = Dyy — Agy
for x # y. If D = (Dy,) is the diagonal matrix such that D, is the degree
of &, then L = D — A. The Laplace spectrum is the spectrum of the Laplace
matrix. L is real and symmetric, so that the Laplace spectrum is real. If
M1, P2 ... pp are the eigenvalues of the Laplace matrix, then the Laplacian
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energy, denoted by LE(G), is defined by

2) LEG) =Y lui — 2

The matrix @ = D + A is called the @-Laplace matrix or the signless
Laplace matrix of G. If t1 > to > ... > t, > 0 are the eigenvalues of the
Q-Laplace matrix of G then the @-Laplacian energy of G is defined by

P
2
(3) QE(G) =) Iti—
i=1 p
The Seidel matrix S(G) = (si5), is a modified adjacency matrix, defined
by
—1, if i and j are adjacent (i # j)

Sij = 1, if ¢ and j are non-adjacent (i # j)
0, i=j.
Then the Seidel energy is defined by
P
() SE(G) =) _ls;]
Jj=1

where s; are the eigenvalues of S.

The maximum degree matrix of order n is a matrix [1], whose (i, 7)-

element is
MD.r — { maxz{d;,d;}, if i and j are adjacent (i # j)
v 0, otherwise
where d; is the degree of vertex i.
Then the maximum degree energy is defined by
P

() MDE(G) = ||

j=1
where o; are the eigenvalues of maximum degree matrix of G.

A graph G in which a vertex is distinguished from other vertices is called
a rooted graph and the vertex is called the root of G. Let G be a rooted
graph. The graph G(™) obtained by identifying the roots of m copies of G
is called the one-point union [7].

Eigenvalue calculation without the aid of a computing software is rarely
easy. In this paper we consider the one-point union of m copies of the
comple)te graph K, which we denote by K,(lm). We compute different energies
of Kr(lm .

2. A FEW APPLICATIONS

The aim of this section is to draw the attention of the mathematical
community to rapidly growing applications of the theory of graph spec-
tra. Besides classical and well documented applications to Chemistry and
Physics, there are applications of graph eigenvalues in Computer Science in
various investigations. There are also applications in several other fields like
Biology, Geography, Economics and Social Sciences.
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Graph spectra and energy have several important applications in com-
puter science. Graph spectra appear in internet technologies, pattern recog-
nition, computer vision and in many other areas [4]. One of the oldest
applications (from 1970’s) of graph eigenvalues in computer science is re-
lated to graphs called expanders. The recent progress on expander graphs
and eigenvalues was initiated by problems in communication networks. Ex-
panders can be constructed from graphs with a small second largest eigen-
value in modulus. Such class of graphs includes the so called Ramanujan
graphs [6].

The largest eigenvalue A1 plays an important role in modelling virus prop-
agation in computer networks. The smaller the largest eigenvalue, the larger
the robustness of a network against the spread of viruses. In fact, it was
shown in [14] that the epidemic threshold in spreading viruses is propor-
tional to /\1—1 Motivated by this fact, the authors of [13] determine graphs
with minimal A; among graphs with given numbers of vertices and edges,
and having a given diameter.

Web search engines are based on eigenvectors of the adjacency and some
related graph matrices [3, 10].

The indexing structure of object appearing in computer vision (and in a
wide range of other domains such as linguistics and computational biology)
may take the form of a tree. An indexing mechanism that maps the structure
of a tree into a low-dimensional vector space using graph eigenvalues is
developed in [12].

3. ENERGY OF K™ m >2,n > 2

Let G be KS"), m > 2,n > 2. The adjacency matrix A of the complete
graph K,,_; is a square matrix of order n — 1 given by

=0

1
0
1

[y
— ==

1
1
1

111 -~ 10

Hence the adjacency matrix Ag of G is given by

0 1z 1z -~ 1p
1c A 0 - 0
Ag=|1c 0 4 - 0
1c 0 0 --- A

Clearly A is a square matrix of order ((n — 1)m + 1) with leading term
0; 1 is a row vector of n — 1 number of 1’s; 1¢ is the transpose of 1g; the
matrix A on the leading diagonal is the adjacency matrix of K,,_1 and 0 is
the zero matrix of order n — 1.
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Theorem 3.1. Let G be Kflm), m>2,n>2. Then
—2)—/n2+4(m—1)(n—1) —2)+/n2+4(m—1)(n—1)
(n=2)—y/m 2(m )(n=1)  (n=2)+4/n 2(m )(n—1) 1 (n—2)

spec(G) =
1 1 mn—2) (m-—1)
and E(G) = \/n?2+4(m—1)(n—1) + (n —2)(2m — 1).

Proof. The characteristic polynomial of G is

- 1gr 1r 1r

1c A- ) 0 0
|Ag—)\f|=10 0 A—)X --- 0

1c 0 0 s A=A

with 15, 1¢, A and 0 as defined earlier. We name the rows and columns of
Ag—Mas Ry, R, Cp, Cl for 1<t<mand 1<i<n-1
Step 1: For every t, 1 <t < m, replace R! by Rt — R for 2 <i<n— 1.

Then
-\ 1z 1z --- 1p
1, A, 0 -~ 0
Ag — M| =1 +1""2 |1, 0 A - 0
1. 0 0 - A

’ . . .
where 1 is a column vector of n — 1 entries given by

1

o

1,=| 0
0

and Aj is a matrix of order n — 1 given by

A 1 1 - 1
1 -1 0 0
A = 1 0 -1 0
1 0 O -1

n—1
Step 2: For every ¢, 1 <t < m, replace R} by Y R

i=1
Then the characteristic polynomial of G takes the form
A 1g 1 - 1g
1, A4 0 -~ 0
Ag = M|=1+1""2 |1z 0 Ay --- 0

1, 0 0 - A
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where
“A+(n-2) 0 0 0
1 -1 0 0
Ay = 1 0 -1 0
1 0 0o - -1

Step 3: For every t, 2 < t < m, replace R} by R} — Ri.

-\ 1p 1p 1z
1, A4 0 0
|[Ag — M| = 1+ 0" D (A4 (n—2))""1|0c Ay Ay 0
0c A, 0O Al
where
1 0 0 0
1 -1 0 0
Ay = 1 0 -1 0
1 0 0 -1
and
-1 0 0 0
0 0 0 - 0
A= 0 00 0
0O 00 --- 0
m n—1
Step 4: Replace C by > 3" C!. Then
t=1i=1
Y 1’R 1 - 1p
1., B 0 --- 0
|[Ac — M| =1+ )™ (x4 (n—-2))"10c 0 A, --- 0
Oc 0 0 --- A,
where
“A+(n-2) 0 0 0
0 -1 0 0
B— 0 0 -1 0
0 0 0 -1
1
0
o= 0
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0
0
oc=|0
0
and
1p=(mn-1) 1 1 -~ 1)

n—1
Step 5: For every ¢, 2 < t < m, replace C} by > C!. Then
=1

A L 1y o 1
1, B 0 - 0
A = M| =1+ N (x4 (n—-2)"10c 0 Ay - 0
Oc 0 0 - A
where
1=((-1) 11 1)
and
1 0 0 0
0 -1 0 0
Ay=] 0 0 -1 0
0 0 0 ~1
Hence

m-1|—=A  m(n—1)

[Ag — M| = 1+ )™ D (=X + (n - 2)) 1 “A+(n—2)

=1+ N DX+ (n=2)"" N = (n—2)A —m(n—1))

Hence
(n72)7\/n2+24(m71)(n71) (n—2)+\/n2+24(m—1)(n—1) 1 (TL . 2)
spec(G) =
1 1 m(n—2) (m—1)
and
EG) =yn2+4m—-1)n—-1)+ (n-2)2m—1). O

4. LAPLACIAN, Q-LAPLACIAN, SEIDEL AND MAXIMUM DEGREE
ENERGIES OF K™, m > 2, n>2
In this section we compute the Laplacian, Q-Laplacian, Seidel and maxi-

mum degree energies from the corresponding spectra denoted by LSpec(G),
QSpec(@), SSpec(G) and M DSpec(G) respectively.
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Theorem 4.1. Let G be K,(Lm), m>2,n>2. Then

. n 1 mn—m+1 0
LSPeC(G)_(m(n—2) m—1 1 1)
and
m2(2n? —4n +2) +2m(n — 2) + 2

LE(G) = m(n—1)+1

Proof. The characteristic polynomial of G is

)\ 1p 1 - 1r

1c L-—MI 0 0

|Lg — M| = 1c 0 L—X --- 0
1c 0 0 o L= M

with 1r, 1¢, L and O as defined earlier.
As in Theorem 3.1, we perform the following steps.
Step 1: For every t, 1 <t < m, replace R! by Rt — R for 2 <i<n— 1.

n—1
Step 2: For every t, 1 <t < m, replace R! by R} — > Rl

i=2
Step 3: For every t, 2 < t < m, replace R} by R} — Ri.

m n—1
Step 4: Replace C| by > > CL.
i=1i=1
n—1
Step 5: For every t, 2 <t < m, replace C} by > CL.
i=1

These steps give
|Lg — M| = (A —n)"" DA = 1D (A2 = Amn — m + 1))
Consequently

. n 1 mn—m+1 0
LSpec(@) = (m(n -2) m-1 1 1)

and
m2(2n? —4n +2) +2m(n — 2) + 2
m(n—1)+1

LE(G) =

Theorem 4.2. Let G be K,(lm), m>2,n>2. Then

_ n—2 2n-3 a f
QSpeC(G)_(m(n—Q) m-1 1 1>

(mn—m+2n—3)+y/(mn—m+2n—3)2—4m(n—1)(2n—4)

where o = 3 )
8= (mn7m+2n73)7\/(mn773+2n73)274m(n71)(2n74) and
2 2 2 [ =)
QE(G) = m_(8n” — 10n + 7721(—71277111()714_—1 Sn+5) -2+t 3+\/(mn —m+2n—3)2 —4dm(n—1)(2n — 4)
for2<n<4and
2092 _ 2 _ _
QE(G) = m*(3n® — 10n +7) — 2m(n® — 6n+5) — 2n + 3+m(n—1)+2n—3

m(n—1)+1
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forn >5.

Theorem 4.3. Let G be K,(lm), m>2,n>2. Then

1 —(2n -3 0
§Spec(@) = <m(n—2) (m—l : '1Y 1>

—m—2n+3)+ —m—2n+3)%2+4m(n—1
’whe’I‘E’y:(mnm n )\/(mzm n+3) m(n )’

_ (mn—m—2n+3)—y/(mn—m—2n+3)2+4m(n—1)
- 2

)
and

SE(G) = (2mn —m —2n+3) + /(mn —m — 2n + 3)2 + 4m(n — 1)
Theorem 4.4. Let G be K,(Lm), m>2,n>2. Then
a B —(n-1)

1 1 mn-1)-1

MDSpec(G) =

where o — (n—1)(mn—m—1)—\/((n—12)(mn—m—1))2—#—4(m(n—1))3

and B = (n—l)(mn—m—1)+\/((n—12)(mn—m—1))2+4(m(n—1))3

and MDE(G) = (m(n—1)-1)(n—1)++/((n — 1)(mn — m — 1))2 + 4(m(n — 1))3.

5. CONCLUSION

In this paper we have determined five types of energies for the one-point
union of complete graphs on n vertices, n > 2. In the mathematical and
mathematico-chemical literature there exist countless graph matrices; that
is matrices defined in terms of certain structural details of the underlying
graph. The problem can be studied for such matrices. Computation of
Randié energy [2, 11] and sum-connectivity energy [15] are in progress for
the graph considered in this paper.
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